Characterization of Xanthophyll Pigments, Photosynthetic Performance, Photon Energy Dissipation, Reactive Oxygen Species Generation and Carbon Isotope Discrimination during Artemisinin-Induced Stress in Arabidopsis thaliana

نویسندگان

  • M. Iftikhar Hussain
  • Manuel J. Reigosa
چکیده

Artemisinin, a potent antimalarial drug, is phytotoxic to many crops and weeds. The effects of artemisinin on stress markers, including fluorescence parameters, photosystem II photochemistry, photon energy dissipation, lipid peroxidation, reactive oxygen species generation and carbon isotope discrimination in Arabidopsis thaliana were studied. Arabidopsis ecotype Columbia (Col-0) seedlings were grown in perlite and watered with 50% Hoagland nutrient solution. Adult plants of Arabidopsis were treated with artemisinin at 0, 40, 80, 160 μM for one week. Artemisinin, in the range 40-160 μM, decreased the fresh biomass, chl a, b and leaf mineral contents. Photosynthetic efficiency, yield and electron transport rate in Arabidopsis were also reduced following exposure to 80 and 160 μM artemisinin. The ΦNPQ and NPQ were less than control. Artemisinin treatment caused an increase in root oxidizability and lipid peroxidation (MDA contents) of Arabidopsis. Calcium and nitrogen contents decreased after 80 and 160 μM artemisinin treatment compared to control. δ13C values were less negative following treatment with artemisinin as compared to the control. Artemisinin also decreased leaf protein contents in Arabidopsis. Taken together, these data suggest that artemisinin inhibits many physiological and biochemical processes in Arabidopsis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular genetics of xanthophyll-dependent photoprotection in green algae and plants.

The involvement of excited and highly reactive intermediates in oxygenic photosynthesis inevitably results in the generation of reactive oxygen species. To protect the photosynthetic apparatus from oxidative damage, xanthophyll pigments are involved in the quenching of excited chlorophyll and reactive oxygen species, namely 1Chl*, 3Chl*, and 1O2*. Quenching of 1Chl* results in harmless dissipat...

متن کامل

PART OF A SPECIAL ISSUE ON REACTIVE OXYGEN AND NITROGEN SPECIES Diurnal changes in the xanthophyll cycle pigments of freshwater algae correlate with the environmental hydrogen peroxide concentration rather than non-photochemical quenching

Background and Aims In photosynthetic organisms exposure to high light induces the production of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), which in part is prevented by non-photochemical quenching (NPQ). As one of the most stable and longest-lived ROS, H2O2 is involved in key signalling pathways in development and stress responses, although in excess it can induce damage....

متن کامل

Overexpression of beta-carotene hydroxylase enhances stress tolerance in Arabidopsis.

Plant stress caused by extreme environmental conditions is already a principal reason for yield reduction in crops. The threat of global environment change makes it increasingly important to generate crop plants that will withstand such conditions. Stress, particularly stress caused by increased sunlight, leads to the production of reactive oxygen species that cause photo-oxidative cell damage....

متن کامل

A structural basis for the pH-dependent xanthophyll cycle in Arabidopsis thaliana.

Plants adjust their photosynthetic activity to changing light conditions. A central regulation of photosynthesis depends on the xanthophyll cycle, in which the carotenoid violaxanthin is converted into zeaxanthin in strong light, thus activating the dissipation of the excess absorbed energy as heat and the scavenging of reactive oxygen species. Violaxanthin deepoxidase (VDE), the enzyme respons...

متن کامل

Photodamage of the photosynthetic apparatus and its dependence on the leaf developmental stage in the npq1 Arabidopsis mutant deficient in the xanthophyll cycle enzyme violaxanthin de-epoxidase.

The npq1 Arabidopsis mutant is deficient in the violaxanthin de-epoxidase enzyme that converts violaxanthin to zeaxanthin in excess light (xanthophyll cycle). We have compared the behavior of mature leaves (ML) and developing leaves of the mutant and the wild type in various light environments. Thermoluminescence measurements indicated that high photon flux densities (>500 micromol m(-2) s(-1))...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015